SNM 2010. GP Oncology. June 7, 2010

Variations of clinical PET/CT operations for oncology imaging: An international web-based survey

T Beyer^{1,2}, F Walter³, LS Freudenberg², J Czernin³

- ¹ cmi-experts GmbH, Zurich
- ² Dept Nuclear Medicine, UH Essen
- ³ UCLA, Los Angeles

Conflict of interest

T Beyer

CEO & Founder of cmi-experts GmbH, Zurich, CH

LS Freudenberg

Advisor to cmi-experts GmbH, Zurich, CH

J Czernin

Stockholder Sofie Biosciences, Momentum Biosciences, Advisor to cmi-experts GmbH, Zurich, CH

NONE

Clinical PET/CT

Delbeke et al. JNM 47 2006 PROCEDURE GUIDELINE

Procedure Guideline for Tumor Imaging with ¹⁸F-FDG PET/CT 1.0*

Dominique Delbeke¹, R. Edward Coleman², Milton J. Guiberteau³, Manuel L. Brown⁴, Henry D. Royal⁵, Barry A. Siegel⁵, David W. Townsend⁶, Lincoln L. Berland⁷, J. Anthony Parker⁸, Karl Hubner⁹, Michael G. Stabin¹⁰, George Zubal¹¹, Marc Kachelriess¹², Valerie Cronin¹³, and Scott Holbrook¹⁴

Krause et al. Nuklearmedizin 46 2007

FDG-PET/CT in oncology*

German Guideline

, V. Minkov⁵, M. Reiser⁶,

FDG-PET/CT in der Onkologie*

Schattauer GmbH

© 2007

B. J. Krause¹, T. Beyer², A. Bockisch², D. Delbeke³, J. Kotzerke⁴, V. Minkov⁵, M. Reiser⁶, N. Willich⁷, Arbeitsausschuss Positronenemissionstomographie der Deutschen Gesellschaft für Nuklearmedizin**

Boellaard et al. EJNMMI 37 2010 FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0

Ronald Boellaard & Mike J. O'Doherty & Wolfgang A. Weber & Felix M. Mottaghy & Markus N. Lonsdale & Sigrid G. Stroobants & Wim J. G. Oyen & Joerg Kotzerke & Otto S. Hoekstra & Jan Pruim & Paul K. Marsden & Klaus Tatsch & Corneline J. Hoekstra & Eric P. Visser & Bertjan Arends & Fred J. Verzijlbergen & Josee M. Zijlstra & Emile F. I. Comans & Adriaan A. Lammertsma & Anne M. Paans & Antoon T. Willemsen & Thomas Beyer & Andreas Bockisch & Cornelia Schaefer-Prokop & Dominique Delbeke & Richard P. Baum & Arturo Chiti & Bernd J. Krause

Routine PET/CT operations governed by guidelines

Background

M Graham et al, SNM 2009 -

The IRAT Network

Variation in PET-CT Methodology at Academic Centers

The IRAT Network

M. M. Graham, R. Badawi, R. L. Wahl

University of Iowa, University of California - Davis, Johns Hopkins University

Abstract

ethodology, it became apparent that there were significant differences i

notusions: This wide variation in technique does not seem to affect the utility of G PET imaging at the various institutions, however it means it is impossible to be their retroopeding data hay multi-cent analysis of efficient, it also impossible solity of the various sites to participate in prospective clinical traits, since baseline loss may have to the appealse, Another spiritual protein with this wide variation is of sensitivities and sponfoliose in a specific clinical setting, e.g. staging lung concer, be differed at each retration. Quantitative behabilities, sour BOXV, will also be to differed at each station. se different at each institution. Quantitative three-loss, even as work, we rent. This is one reason that the literature in FDG PET imaging is often inadequate in the eyes of health technology assessment experts. This suggests are is a need to define a guideline for oncologic imaging with FDG PETICT that is hitly defined and has a minimum variable in key parameters.

15 Participating Sites

Dana-Farber

Georgetown U.

Colorado U.

- Univ. of lowa Johns Hopkins
- Ohio State Univ.
- UPMC Hillman Vanderbilt U. Roswell Park UC Davis
- · Washington Univ.
- Univ. of Washington
- Univ. of Wisconsin
- · Memorial Sloan-Kettering
- · Arizona Southwest PET/CT Institute

Results of a survey of 15 academic PET-CT sites

- Average FDG dose for adults varies from 7 to 20 mCl. 2. The uptake time following injection varies from 45 to 90 m.
- Most sites do CT transmission scan prior to injection of contrast.
- Four sites never do diagnostic CTs, most are in the range of 15% to 50% of the time, while 1 site does diagnostic CTs in all patients. Almost all sites use
- Bladder catheterization is used rarely or never at all sites.
- IV contrast use: H&N (average of 28%), lymphoma (18%), lung cancer (13%) and colon cancer (13%). In each group the SD > 100%.
- Recommended minimum duration for fasting was evenly split between 4 and 6 hours.
- Sites were evenly split on recommending a low carbohydrate diet on the day before the PET study.
- approaches are: Early AM study: fast overnight, hold all DM meds (40%)
- Early AM study: fast overnight, allow all DM meds (7%)
- Early am light breakfast, all DM meds allowed (17%)
- Early am light breakfast, some DM meds allowed (11%) Titrate with IV insulin when necessary (<10%)
- 11. Glucose levels are measured at all sites. One exception, only measured in diabetic or research patients.
- Most sites have a policy for not doing studies in patients with blood glucose levels above 200 mg/d.
- 13. 8 sites have GE systems, 5 have Siemens, and two have both GE and Siemens
- 14. Apparently the different sites all have different versions of PET scanner software.
- The emission scan acquisition mode for whole body is 3D for 8 systems (all Siemens) and is 2D for 13 (all GE).

- Most studies are from the base of brain to thighs (80%). Other: Top of head to toes (7%), Brain only (5%), Head and neck only (5%). ~ 60% of studies are arms 17. The duration of emission scan per bed position for whole-body scans ranges
- 18. All transmission scans are done using CT.
- 19. CT technique used varies moderately: kVp:120 (10 sites) 140 (4 sites) 160 (1 site). At least 4 sites use automatic adjustment of mAs. Sites with fixed mAs. most are done at 50 (4 sites), range is from 8 to 120. Most sites adjust dose for pediatric patients (17 sites), although 4 do not.
- Most common PET reconstruction algorithm is 2D OSEM with 2 iterations and 20 to 30 subsets (12). FORE 2D OSEM (4), 3D OSEM (2), FORE 3D OSEM (1).
- 21. 2D post reconstruction filtering is used at 14 sites. 3D filtering at 4. Z-axis
- Most common PET voxel sizes (in mm): GE systems (8/13) are X: 4.69, Y: 4.69
 X: 3.27. Siemens (5/9) X: 4.06, Y: 4.06 Z: 3.37.
- 23. Image interpretation software: GE sites usually use GE Xeleris. Half of the Siemens sites use Siemens software (Esoft or Leonardo). Others: Medimage, MirrVista, or Philips (Site.
- 24. All sites archive their PET/CT images to a PACS where the images are available
- 25. At 12 sites PACS images can be viewed as fused images, some sites only done
- 26. PACS PET/CT image display quality varies markedly across the sites: 5 are excellent, 6 acceptable and 4 poor.
- PACS software for referring physicians include: McKesson (3 sites), Phillips isite
 Agfa (2), Stentor (2), Ultravisual (1) and Emageon (1).
- 28. Most sites make digital images available on CD for referring physicians and
- Software supplied on the CDs: efilm lite (4), MimVista (3), Hermes, iSite, Medimage, Centricity, and FilmX.
- 30. Most sites load outside DICOM images onto their PACS or PET image viewing

Summary: Major Areas of Variation

FDG dose (7-20 mCi) Uptake time (45-90 min)

Fasting (4-6 hr)

Recommend low carbohydrate meal (50%-50%) Time per bed position (2-7 min)

Wirle variation in Diabetic management CT technique

PET reconstruction technique Image interpretation software

PACS systems

Conclusion & Recommendations

Need for further standardization of methodology Particularly diabetic management, imaging time, image quality. CT technique, reconstruction technique, and image quality for referring physicians

Possibility of a dedicated PET Registry for diabetics to determine best management practices

Good standardization would lead to: Rotter accontance of our procedures Possibility of high quality retrospective studies

Large variability among academic centres

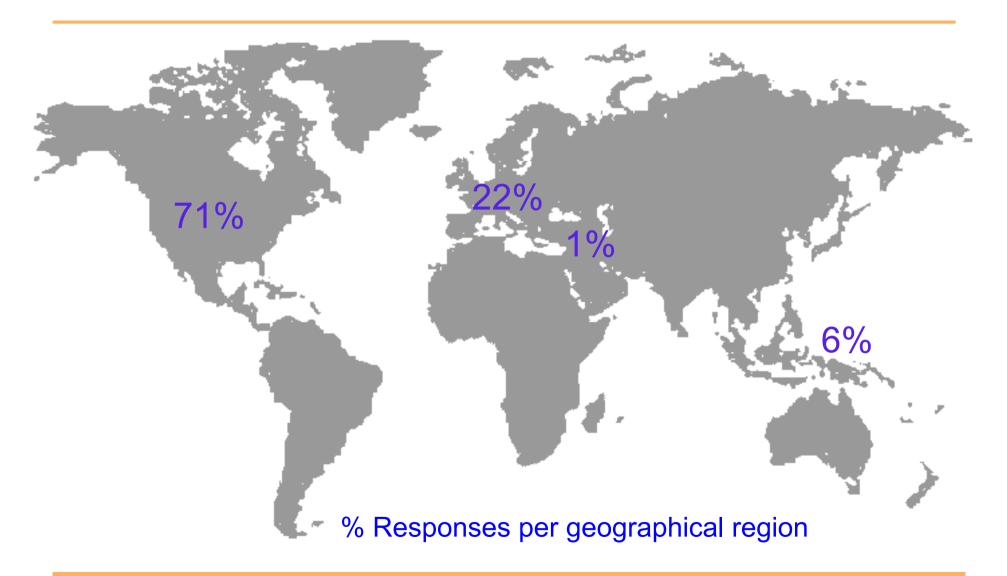
Injected activity, fasting time, diet and exam parameters

Need for standardization of methodology (cf HTA)

Motivation

- To assess clinical PET/CT operations worldwide
- To reflect professional experience with PET and PET/CT
- To review imaging protocols for FDG-PET/CT studies
- To cross-reference protocol variabilities to guidelines

Methods


Survey: 58 questions

Demographics Professional background, countries, regional factors

Operations Experience, no. systems, tracer production, indications

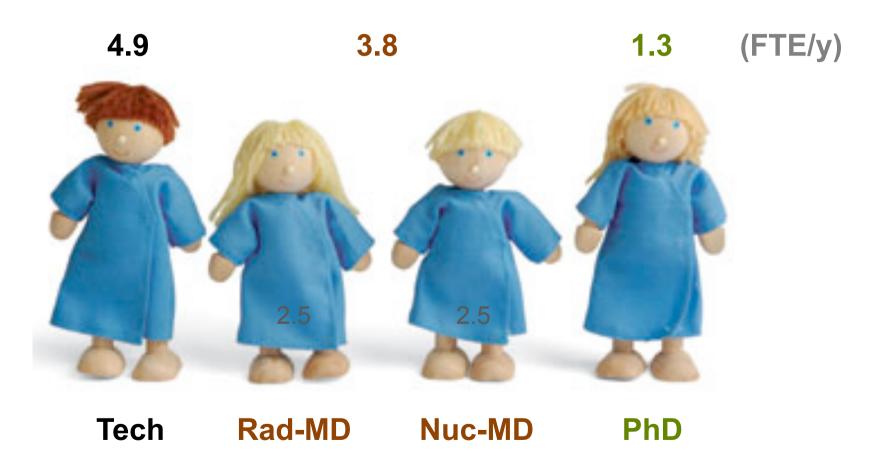
Imaging protocol Routine FDG-PET/CT oncology studies

Results - Demographics

14% response rate. Mainly from the US and Europe.

Results - Demographics

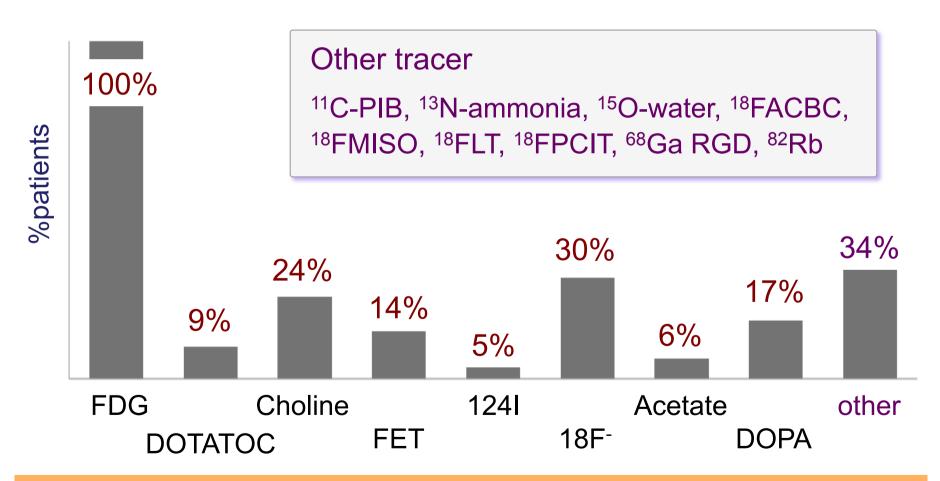
PET/CT governance


Public 60%

Private 33%

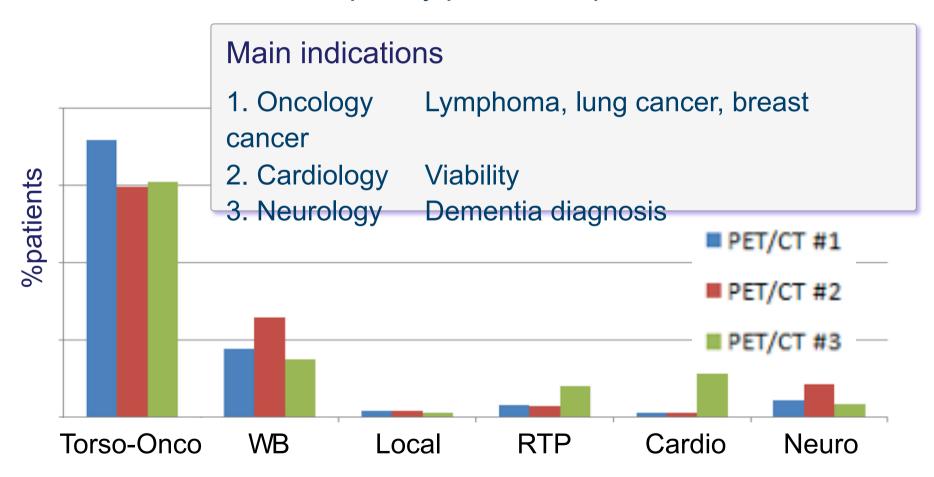
Public/Private 7%

Results - Demographics

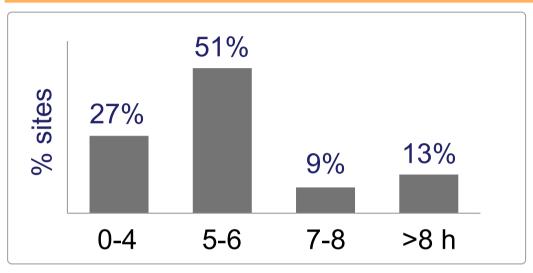

How many employees are actively involved in PET/CT operations?

More technologists than MD and PhD per PET/CT site

Results - Operations


In how many patients (%) are the following tracers used?

Prevalence of ¹⁸F-labelled radiopharmaceuticals


Results - Operations

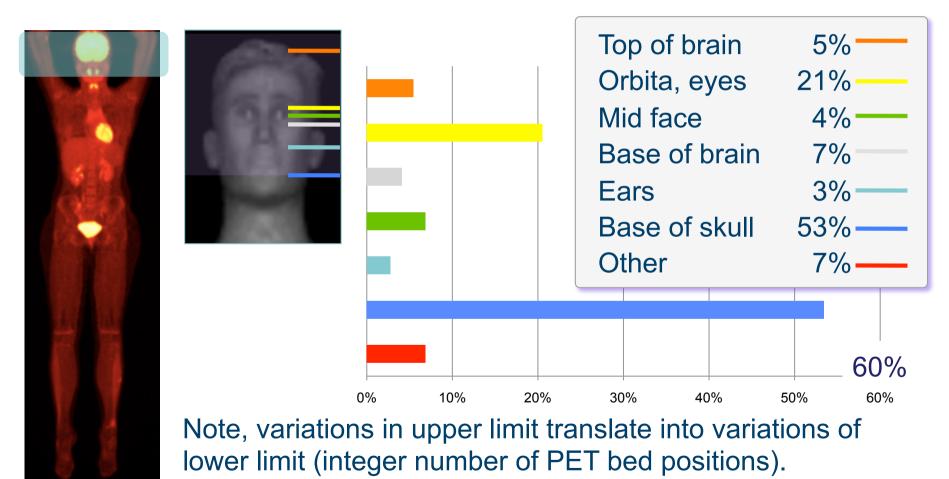
Which are the most frequently performed patient examinations?



Mainly torso-oncology imaging. Shift to special applications.

Results – Imaging Protocol

• What is the average fasting period (h) prior to FDG-PET/CT?

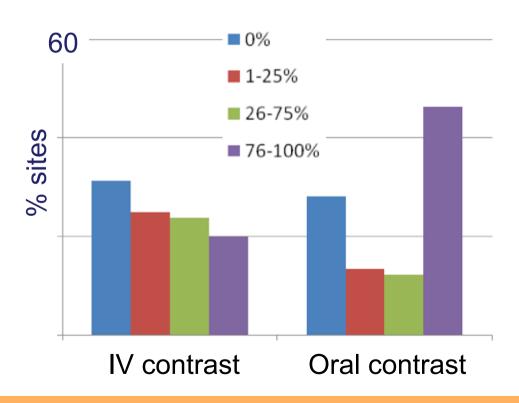


• What is the blood glucose level cut-off point (mg/dl)?

Major variations: Fasting and Blood sugar level cut-off

Results – Imaging Protocol

Please define co-axial anatomical limits for a torso PET/CT exam.



Major variation: Upper co-axial imaging range (± 10 cm)

Results – Imaging Protocol (CT)

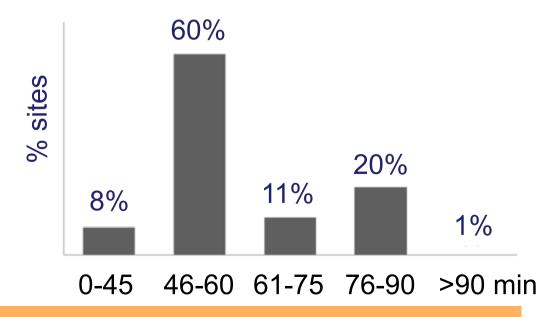
Do you use a dedicated low-dose, non-enhanced CT for CT-AC? 73% yes

• In how many patients (%) do you employ IV or oral CT contrast?

Low-dose CT-AC prevails. More oral than IV contrast.

Results – Imaging Protocol (PET)

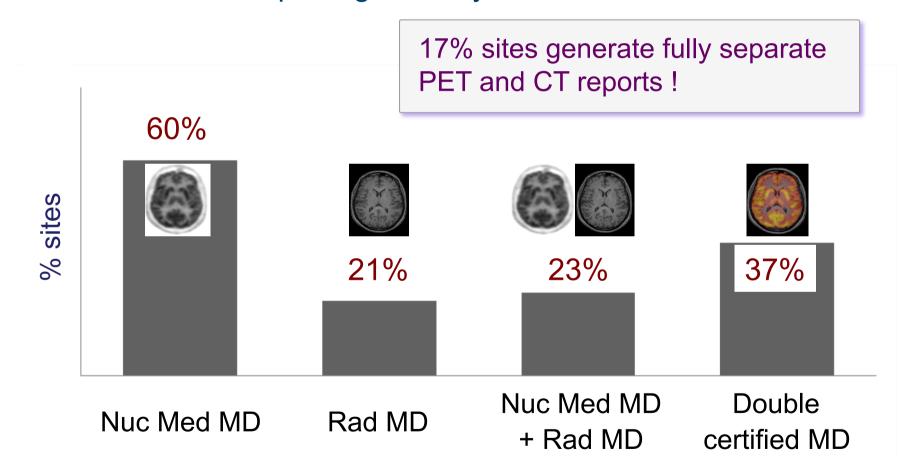
44% yes


5.2 (1.5 - 7.8) MBq/kg

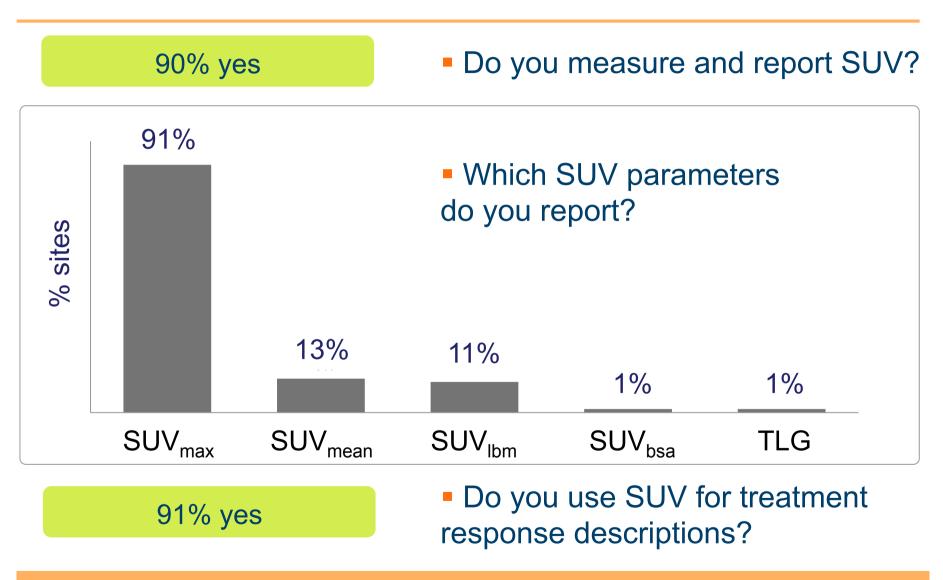
2D: 524 (370-670) MBq

3D: 465 (200-740) MBq

- Do you perform patient weight based administration of tracer activity?
- If **no**, then please give the absolute activity for a standard 75 kg patient.


• What is the FDG uptake time?

Major variations: Injected activity and FDG uptake time


Results – Imaging Protocol (Reporting)

Who is PET/CT reporting done by?

Individual or separate reporting and reports rather popular.

Results – Imaging Protocol (Reporting)

SUV_{max} used in diagnosis, staging and follow-up

Discussions

- Eligible response rate of 14% is acceptable
- PET/CT clinically established, multiple systems on site
- Mainly ¹⁸F-based tracers for oncology imaging
- Major variations in oncology imaging protocols
 - Patient preparation, injected activity and uptake time
 - Definition of imaging ranges and acquisition parameters
 - Use of CT contrast agents
- High fraction (17%) of fully-separate reports

Conclusions

- Major variations in clinical FDG-PET/CT operations
- Guideline variations encourage protocol variations
- Onset of standardization efforts must be supported
- Need for continuous (cross-specialists) training

Revised guidelines with minimum variations in key parameters

Acknowledgement

AMI – Academy of Molecular Imaging

B. Nichole Navar, AMI

A Bockisch (Essen)

A Cuocolo (Milano)

G Jonas (vokativ GmbH)